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Abstract

Our objectives for this 10 week feasability study were to gain an initial theoretical under-
standing of the numerical issues involved in modeling fluid-structure interface problems and to
develop a prototype software infrastructure based on deforming composite grids to test the new
approach on simple problems. For our first test case we considered a two-dimensional fluid-solid
piston problem in which one half of the domain is occupied by fluid and the other half by a
solid. We determined the exact solution to this problem using the method of characteristics and
d’Alembert’s solution to the wave equation. We solved this problem using our new numerical
approximations and verified the results compared to the exact solution. As a second test case we
considered a two dimensional problem consisting of a shock in a fluid that strikes a cylindrically
shaped solid.
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1 Introduction/Background

There are many important multi-physics problems that require the simulation of a gas or fluid
coupled to the motion of deforming solids. These include applications from DOD (weapons effects,
insensitive munitions, warhead design, composite armor, and earth penetration), DOE (vibrations
in reactor fuel rods for GNEP, NIF holhraum targets), DHS (threat assessment and neutralization),
and industry (ablation, fluidized beds, combustion, pharmaceutical). It is difficult for one algorithm
to efficiently and accurately treat all the different phases (gas, liquid, solid) and existing simulation
codes are limited in their ability to solve problems in this class. We propose the development of a
general purpose interface coupling technology called ”membranes” that can be used to couple two
different physics solvers. The physics solvers will in general solve different equations, on different
grids with different numerical approximations. The membrane technology will serve as the agent
that couples the disparate grids and solves the interface matching conditions that, for example,
impose continuity and stress jump conditions. The Overture project in CASC has developed an
efficient gas-phase reacting flow solver (CGCNS) that use moving overlapping grids and adaptive
mesh refinement to model shocks and detonations. The ALE3D solver from B-division can effectively
model the deformation of a wide class of solids. The longer term goal of this project will focus on
coupling the Overture compressible flow solver, CGCNS, and ALE3D. The membrane technology
will also be applicable for coupling other physics solvers (e.g. DIABLO). The resulting coupled
multi-physics solver will enable the simulation of some very difficult but important problems and
generate the interest and potential new funding from the DOD, DHS, DTRA, as well as industry.

The objectives of this 10 week feasibility study are two-fold. The first is to gain an initial theo-
retical understanding of some of the numerical issues involved in modeling fluid-structure problems
and the second is to begin development of the membrane software-infrastructure while testing the
approach on some simple problems. On the theoretical side we will analyze and develop methods for
solving the one-dimensional interface model problem that couples a fluid in one half of the domain
with a solid in the other half. Here we will consider the problems of well-posedness of the problem
and interface conditions, and the stability and accuracy of discrete approximations. The question
of developing higher-order accurate approximations will be considered. Time-stepping algorithms
will be developed for treating the case when the characteristic wave speeds of the fluid and solid are
widely different. On the development side, we will construct a prototype version of the membrane
software infrastructure for treating multi-dimensional interfaces and use this infrastructure to solve
some simple two-dimensional fluid-structure problems. The first target example will consider a two-
dimensional problem where one half the domain is occupied by fluid and the other half by a solid.
A shock sent through the fluid will impinge on the solid region, causing reflected and transmitted
waves and causing the solid to deform. The grid in the fluid and the grid in the solid will deform.
We will use fluid flow solvers from Overture coupled to a simple solid-mechanics code. The second
target example will consider a fluid coupled to a solid of more general shape such as a cylinder or
ellipsoid.

2 Research Activities and Results

We have developed a numerical approach for modeling fluid-structure problems. We have designed
and begun development of a software infrastructure for modeling multi-physics multi-domain prob-
lems. Different physics solvers (e.g. compressible flow solver or solid-mechanics solver) are associ-
ated with each domain. The approach is based on the use of moving overlapping grids and accurate
approximations to the interface jump conditions.
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We have analysed the problem of a fluid domain separated from a solid domain by a moving
planar interface. An exact solution to this problem was determined in the case when the fluid is
governed by the Euler equations and the solid is governed by linear elasticity. The solution to this
problem was computed with our new approach and the exact solution was used to measure the
error. We have also demonstrated the approach for solving an elastic cylinder embedded in a fluid.

We have analysed the numerical stability and accuracy of new centered interface approximation
for the jumps in temperature and heat flux at the fluid-solid interface and have published a paper
describing this approach [7].

2.1 The Overlapping Grid Approach for Multi-Domain Problems

In this section we describe the basic features of the overlapping grid approach for solving multi-
domain problems. We are interested in finding the solution u(x, t) to a PDE initial-boundary-value
problem in a deforming domain Ω,

L(u, ∂tu, ∂xµu) = f(x, t), x ∈ Ω,

B(u, ∂tu, ∂xµu) = g(x, t), x ∈ ∂Ω,

I(u, ∂tu, ∂xµu) = h(x), x ∈ Ω, t = 0,

where L denotes the partial differential equations, B the boundary conditions and I the initial
conditions. For now we consider the general case; in later sections we give more specific details of
the equations we solve for problem areas of particular interest. The domain Ω may consist of a set
of Nd sub-domains that represent different materials,

Ω = ∪Nd

d=1Ωd . (1)

Figure 1, for example, shows the domain for a conjugate heat transfer problem that consists of
multiple fluid and solid sub-domains. As indicated by Ω3 in the figure, a single sub-domain may be
multiply connected. For multi-domain problems we will also need appropriate interface conditions
that couple the solutions where sub-domains meet. Examples of these interface equations are given
in later sections.

The entire domain of interest, Ω, is discretized using a composite overlapping grid, G. Each
fluid or solid sub-domain will itself be discretized with an overlapping grid, Gd, with the global
overlapping grid G containing all the sub-overlapping grids,

G = ∪Nd

d=1Gd . (2)

The overlapping grid G consists of a set of Ngrid component grids Gg, i.e.,

G = {Gg}, g = 1, 2, . . . ,Ngrid .

The component grids cover Ω. Similarly, the overlapping grid, Gd, for a sub-domain, will consist of
a set of overlapping component grids which are a sub-set of the grids in G. Each component grid
is a logically rectangular, curvilinear grid defined by a smooth mapping Cg from parameter space
r (e.g. the unit-cube in three dimensions) to physical space x:

x = Cg(r, t), r ∈ [0, 1]3, x ∈ R
3 . (3)

For moving grids, the mapping will depend on time. The mapping is used to define the metric
derivatives ∂x/∂r and the grid points at any desired resolution.
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Figure 1: Top left : a domain Ω with two fluid sub-domains Ω1, Ω2 and three solid sub-domains
Ω3, Ω4 and Ω5. Top right: the composite G consists of five overlapping grids, one for each domain.
Bottom left: a computed conjugate heat transfer solution showing the temperature. Bottom right:
the streamlines in the fluid domains and the temperature in the solid domains.

The governing PDEs are typically discretized with a finite difference or finite volume approxi-
mation. For example, consider approximating the generalized Laplace operator, L defined by

Lw = ∇ · (a∇w) , (4)

where a = a(x) is a real valued coefficient. A straight-forward approach to discretize L on a
curvilinear grid is to use the mapping method, as follows. Using the chain rule, the operator L can
be written in general curvilinear coordinates in nd space dimensions as

Lw =

nd
∑

i=1

nd
∑

j=1

nd
∑

k=1

a
∂rk

∂xi

∂rj

∂xi

∂2w

∂rj∂rk
+

∂rk

∂xi

{

a
∂

∂rk

(∂rj

∂xi

)

+
∂a

∂rk

∂rj

∂xi

} ∂w

∂rj
. (5)

The metric terms ∂rj/∂xk are computed from the mapping that defines the grid and are thus
assumed to be known. The derivatives with respect to the parameter space coordinates rj can be
approximated with difference approximations. The operator L can also be written in conservation

form, or self-adjoint form, in general curvilinear coordinates as

Lw =
1

J

nd
∑

j=1

nd
∑

k=1

∂

∂rj

(

Ajk ∂w

∂rk

)

, Ajk = aJ

nd
∑

µ=1

nd
∑

ν=1

∂rj

∂xµ

∂rk

∂xν
, (6)

where J denotes the determinant of the Jacobian matrix [∂xj/∂rk]. A careful discretization of this
last form of the operator leads to symmetric and compact discrete approximations of any order of
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accuracy as developed in our previous work [5]. These approximations are generalized finite-volume
approximations.

Solution values at interpolation points of some grid G1, for example, are determined by inter-
polation from donor points on some other grid G2. For each interpolation point x1 on grid G1, its
parameter space coordinates, r2 = C−1

g2
(x1), on grid G2 may be found using the inverse mapping.

In parameter space, standard tensor-product polynomial interpolation is used, such as linear inter-
polation (i.e., bi-linear for nd = 2 or tri-linear for nd = 3). For first order hyperbolic systems, such
as the reactive Euler equations, linear interpolation is sufficient for second-order accuracy, while
the solution of a second-order elliptic equations, such as Laplace’s equation, would normally require
quadratic interpolation for second-order accuracy; see the discussion in Chesshire and Henshaw [2]
for further details.

In the multi-domain context we will use a partitioned approach and associate a separate physics
solver with each sub-domain. The physics solver for a sub-domain will advance the solution using
an explicit or implicit predictor-corrector type time-stepping algorithm. A multi-physics solver will
coordinate the different domain solvers and ensure that the interface equations are satisfied. More
details of our time-stepping approach as applied to conjugate heat transfer can be found in [7].
The stability and accuracy of the interface approximations and the coupled approach is of primary
concern in our work.

2.2 Governing equations

We are concerned with the solution to fluid-structure problems in a domain that deforms over time.
Let Ωt denote this domain at time t. The equations of motion for the fluid and solid are governed by
the equations of conservation of mass, momentum and energy, together with constitutive equations
and equations of state. In a fixed Eulerian reference frame, the conservation equations for mass and
momentum are

∂ρ

∂t
+ ∇ · (ρv) = 0, (7)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) = ∇ · σ + ρf , (8)

where ρ is the density, v the velocity and σ the stress tensor. These equations can also be written
in a Lagrangian frame. For our purposes, however, we consider a general (ALE) moving coordinate
system, x = G(X, t), where X denotes a point in the reference configuration Ω. In a numerical
simulation, G will be the equation of motion for the grid. In this general moving frame, the
momentum equations take the form

∂(ρJgv)

∂t
+ ∇X · (ρJgv ⊗ (v − vg)F

−T
g ) = ∇X · (JgσF−T

g ) + ρJgf , (9)

where ∇X is the divergence with respect to X, vg = ∂G/∂t is the grid velocity, Fg = ∂G/∂X
and Jg = det(Fg). The momentum equations in this general frame (9) reduce to the Eulerian
equations (8) or the Lagrangian equations with the appropriate choice of G. The equations for the
conservation of mass and energy in the general frame can be described in a similar way, see for
example [1]. Using the relation ∂Jg/∂t = Jg∇ · vg, equation (9) can be written in the alternative
form

∂(ρv)

∂t
+

1

Jg
∇X · (ρJgv ⊗ (v − vg)F

−T
g ) + ρv

1

Jg
∇X · (JgvgF

−T
g ) =

1

Jg
∇X · (JgσF−T

g ) + ρf , (10)
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which includes a source term. This latter form is sometimes preferred in numerical approxima-
tions [?] since it is easier to enforce that the solution be exact for uniform flows (the so-called
geometric conservation law).
Fluid description: For fluid domains we will consider the solution to the inviscid compressible Eu-
ler equations, the compressible Navier-Stokes equations or the viscous incompressible Navier-Stokes
equations. These different formulations are determined by the appropriate choice of constitutive
laws and equations of state. For a Newtonian viscous fluid, for example, the stress tensor in (9)
is σ = −pI + µ(∇v + ∇vT ), where p is the pressure. In the inviscid case µ = 0, while in the
incompressible case ∇ · v = 0.
Solid description: In solid domains we will begin by considering small displacement linear elas-
ticity. In this case the equations of motion are

ρ
∂2u

∂t2
= ∇X · σ , σ = λ(∇X · u) I + µ(∇Xu + ∇XuT ), (11)

where u = x − X is the displacement. Subsequently we will extend the approach to large-
displacement and large deformation. For example, a commonly used constitutive law for small-strain
and large displacement is the St. Venant-Kirchoff material

S = λ tr(E)I + 2µ , σ = J−1F
(

λ tr(E)I + 2µE
)

FT , (12)

where E = 1
2(FTF−I) is the Green-Lagrange strain tensor and S is the second Piola-Kirchoff stress.

For large deformation, the Mooney-Rivlin material [1] is commonly used as a simple constitutive
law.
Interface conditions: At a fluid-solid interface, the jump conditions are

[v]I = 0, [n · σ]I = 0, [Kn · ∇T ]I = 0. (13)

The first condition says that the fluid velocity on the interface must match that of the solid. For
an inviscid fluid this jump condition will only apply to the normal component the velocity since
the fluid can slip along the interface. The second jump condition defines a balance of forces across
the interface and states that the forces (surface traction) must balance if the interface has no mass.
The third condition on the heat flux applies to problems with heat conduction; K is the coefficient
of thermal conductivity of the material.

2.3 A fluid-solid piston problem

In this sectoion, we consider a one dimension problem that couples the solution of an inviscid
compressible fluid and a linear elastic solid. At t = 0 the fluid occupies the region x > 0 and
the solid the region x < 0. The interface between the fluid and solid is denoted as x = F (t)
with F (0) = 0. The fluid domain is ΩF = {(x, t) | t ≥ 0, x ≥ F (t)}. The solid domain is
ΩS = {(x, t) | t ≥ 0, x ≤ F (t)}.

2.3.1 Solution for the fluid

The fluid satisfies the one-dimensional Euler equations for (x, t) ∈ ΩF ,

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

(ρE)t + (ρEu + pu)x = 0

ρE = ρe +
1

2
ρu2 =

p

γ − 1
+

1

2
ρu2
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with initial conditions (for a fluid initially at rest with constant density and pressure)

ρ(x, 0) = ρ0, u(x, 0) = 0, p(x, 0) = p0, for x > 0

and boundary condition

u(x, t) = Ḟ (t), for x = F (t).

C−

C+

ρ0

u0=0

p0

(x,t)

x

t

(g(τ),τ)

Piston

x=g(t)
x=a0t

Figure 2: Exact solution for the fluid region with a moving boundary.

An x-t diagram for a one-dimensional piston is shown in Figure ??. At time t = 0, an ideal
gas with density ρ0, velocity u0 = 0, pressure p0 and sound speed a0 = (γp0/ρ0)

1/2 occupies the
channel to the right of the piston initially at x = 0. For t > 0 it is assumed that the piston
moves according to the function x = F (t), which for now we consider to be a known function. If
Ḟ (t) < 0 and F̈ (t) < 0, then the piston recedes and no shocks form, and we may construct an exact
solution using the method of characteristics as indicated in the figure. Since all C− characteristics
carry the same information from the uniform, undisturbed state for x > a0t, and thus the C+

characteristics from the piston face are straight lines. For a given point (x, t) in the disturbed flow,
the corresponding point (F (τ), τ) on the piston following a C+ characteristic is determined by

x − F (τ) =

[

a0 +
γ + 1

2
Ḟ (τ)

]

(t − τ).

Once the parameter τ is found, the exact solution at (x, t) is given by

u = Ḟ (τ),
a

a0
= 1 +

γ − 1

2

(

u

a0

)

,
p

p0
=

(

ρ

ρ0

)γ

=

(

a

a0

)2γ/(γ−1)

, (14)

since the flow is isentropic (see Whitham [8]).
The flow is determined by the function F (t), the position of the piston face. If this function

is specified, then the exact solution is complete and this solution may be used to compare with
numerical solutions.

2.3.2 Solution for the solid

The solid satisfies the equations of linear elasticity for r < 0, t > 0,

ρs
0ūtt = σs

r ,

σs = (λ + 2µ)ūr,
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which in one-dimension reduces to the second-order wave equation

ūtt = ā2
0ūrr, (15)

σs = ρs
0ā

2
0ūr, (16)

where ā0 is the speed of compression waves in the solid,

ā2
0 =

λ + 2µ

ρs
0

. (17)

The initial conditions are given as

ū(r, 0) = ū0(r) for r < 0,

v̄(r, 0) = v̄0(r) for r < 0,

where v̄ = ∂tū is the solid velocity. The boundary condition is

ū(0, t) = F (t) for t > 0. (18)

Note that for linear elasticity the boundary condition is imposed at r = 0.
The general solution to these equations is of the form

ū(r, t) = f(r − ā0t) + g(r + ā0t) (19)

were f and g are some unknown functions. Imposing the initial conditions implies

f(r) + g(r) = ū0(r), for r < 0

−ā0f
′(r) + ā0g

′(r) = v̄0(r) for r < 0.

These two equations give f(r) and g(r) for r < 0

f(r) =
1

2

[

ū0(r) −
1

ā0

∫ r

0
v̄0(s)ds

]

for r < 0, (20)

g(r) =
1

2

[

ū0(r) +
1

ā0

∫ r

0
v̄0(s)ds

]

for r < 0. (21)

The initial conditions thus determine the full solution for x + ā0t < 0. Imposing the boundary
condition at r = 0 gives

f(−ā0t) + g(ā0t) = F (t) for t > 0

which defines g(ξ) for ξ > 0,

g(ξ) = F (ξ/ā0) − f(−ξ) for ξ > 0 (22)

since f(−ξ) is known from (20).
Thus if F (t) is a known function then the solution to the solid problem is given by (19) with

f(ξ) defined by (20) for ξ < 0 (f is only needed for negative argument) and g(ξ) defined by (21)
for ξ < 0 and (22) for ξ > 0.
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2.3.3 Solution to the coupled fluid-solid problem

In the coupled problem, F (t) is an unknown function. It is determined by imposing the traction
boundary condition at the interface which states that the forces on the solid and the fluids at the
interface have to match: (**check the sign**)

σs(0, t) = −p0

[

1 +
γ − 1

2a0
Ḟ (t)

]2γ/(γ−1)
(23)

From the definition (16) for σs and the condition v̄(0, t) = Ḟ (t), it follows that f ′ and g′ satisfy

ρs
0ā

2
0[f

′(−ā0t) + g′(ā0t)] = σs(0, t) for t > 0, (24)

−ā0f
′(−ā0t) + ā0g

′(ā0t) = Ḟ (t) for t > 0, (25)

it follows that

f ′(−ā0t) =
1

2

[σs(0, t)

ρs
0ā

2
0

− Ḟ (t)

ā0

]

for t > 0, (26)

g′(ā0t) =
1

2

[σs(0, t)

ρs
0ā

2
0

+
Ḟ (t)

ā0

]

for t > 0. (27)

Note that f ′(ξ) is known for ξ < 0 from the derivative of (20) as

f ′(r) =
1

2

[

ū′
0(r) −

1

ā0
v̄0(r)

]

for r < 0 (28)

Subsitituting (23) and (28) into (26) gives

p0

ρs
0ā

2
0

[

1 +
γ − 1

2a0
Ḟ (t)

]2γ/(γ−1)
+

Ḟ (t)

ā0
= −

[

ū′
0(−ā0t) −

1

ā0
v̄0(−ā0t)

]

for t > 0. (29)

This is an implicit relation determining Ḟ (t) which we write as

Ḟ (t) = F(t; ū0, v̄0). (30)

This equation can be integrated in time to give F (t) and the full solution the fluid-solid problem is
thus known.

2.3.4 Initial conditions of a solid at rest

Consider the special case when the solid is initially at rest, ū0(r) = 0 and v̄(r) = 0. Then

p0

ρs
0ā

2
0

[

1 +
γ − 1

2a0
Ḟ (t)

]2γ/(γ−1)
= − Ḟ (t)

ā0
. (31)

Provided this equation has a real solution, Ḟ (t) will be constant, and F will vary linearly with t,

F (t) = −βt (32)

The solution for ū(r, t) in this case will be (note f(r) ≡ 0, g(r) ≡ 0 for r < 0, and g(r) = F (r/ā0)
for r > 0)

ū(r, t) =

{

−β(r/ā0 + t) for −ā0t < r < 0,

0 for r < −ā0t.
(33)

As a consistency check, we note that this is clearly a (weak) solution of the wave equation that
satifies the initial conditions and boundary conditions. In addition the stress is constant on the
boundary r = 0.
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2.3.5 Solid initial conditions chosen to give a specified fluid motion

Question: Can we define initial conditions for the fluid and solid so that the interface follows a
given path?

Suppose we are given a desired interface motion such as F (t) = − a
p tp, then from equation (29)

we see that the initial conditions for the solid should satisfy

−ū′
0(−ā0t) +

1

ā0
v̄0(−ā0t)

]

=
p0

ρs
0ā

2
0

[

1 +
γ − 1

2a0
Ḟ (t)

]2γ/(γ−1)
+

Ḟ (t)

ā0
(34)

≡ G(t) (35)

There are many solutions to this problem. For example, we could choose:

v̄0(x) = ā0G(−x/ā0), for x < 0, (36)

ū0(x) = 0 (37)

2.3.6 Fluid-solid piston problem results

We solve the fluid-solid piston problem on the grid shown in figure 3. The solid domain on the left
uses a single grid. The fluid domain uses two grids; a fixed background grid and a narrow grid on
the interface. This narrow grid moves with the interface. It is recomputed at each time step using
the hyperbolic grid generator.

We choose constant initial conditions for the fluid and solid as

γ = 1.4, ρ0 = γ, p0 = 1, a0 =
√

γp0/ρ0 = 1,

λ = 1, µ = 1, ρs = 1, ā0 =
√

(λ + 2µ)/ρs =
√

3.

The exact solution is given by equation (14) for the fluid and (33) for the solid. The interface
moves at a constant velocity defined by equation (31) with

F (t) = −βt,

β ≈ −0.3482883 .

Note that the interface instantaneously accelerates from rest to the constant velocity −β.
Figure 4 shows some results. We solve the fluid equations with the Godunov solver. The solid

equations are solved with the SOS-NC method.
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Figure 3: Grid for the fluid-solid piston problem.
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Figure 4: Fluid-solid piston. Solution at t = 0.5. Fluid (godunov), solid (SOS), res=8. Top-left:
solution in the fluid. Top-right solution in the solid. Middle-left: errors in the fluid solution.
Middle-right: The solution over time of the fluid properties at a point on the interface. Bottom-left
: solid properties at a point on the interface. 13



2.4 The FSI-DCG numerical approach

Solid

Fluid

Figure 5: Left: a composite grid used in the FSI-DCG approach for a fluid-solid simulation. An
overlapping grid covers the outer fluid domain (blue and green grids). A second overlapping grid
covers the solid domain (red and pink grids). There are two deforming grids (green and pink) that
match to the interface. Right: preliminary results from a simulation of a shock hitting an elastic
solid showing the density in the fluid (plotted on the deformed fluid grid) and the deformation of
the solid.

The deforming composite grid (DCG) approach for fluid-structure-interaction (FSI) problems
is based on a mixed Eulerian/ALE formulation. We use the Eulerian description (8) on static
(non-moving) grids and the equations for a general moving coordinate system (9) for moving and
deforming grids. As discussed in section 2.1, the fluid-solid domain, Ωt, is divided into fluid domains
and solid domains. There can be any number of fluid and solid domains (see figure 1). Figure 5
shows the composite grid for a simple fluid-solid problem along with very preliminary results from
a two-dimensional simulation of a shock hitting an elastic cylinder. One overlapping grid is used
for the fluid domain. A second overlapping grid is used for the solid domain. Localized, curvilinear,
deforming grids are used next to the deforming interface. Static grids are used in the remaining
portions of the domain. As the interface changes over time, the deforming grid will also change to
match the interface. The overlapping grid interpolation points will be updated at each time step
to adjust for the motion of the interface grids.

For generation of the deforming grids we will begin by using our hyperbolic grid generator [4].
This grid generator is used at each time step to construct a new grid based on the current location
of the interface and was used in the results presented in figure 5. The overlapping grid generator
Ogen [3] is then called to update the interpolation points. There are also a variety of other ap-
proaches that have been used to define the motion of ALE grids; these include methods based on
smoothing algorithms and those using evolution equations for the grid points, see for example [?].
We will investigate and compare some of these approaches which may provide grids that vary more
smoothly in time compared to the hyperbolic technique.

3 Exit Plan

Using the results obtained from this 10 week feasability study we have submitted a proposal to the
DOE ASCR office [6] to obtain funding for further developing algorithms to model fluid-structure

14



interaction problems.
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